液晶におけるトポロジカル欠陥の自己組織化を利用した 光渦アレイの作成とその近接場干渉

Fabrication of optical vortex arrays using self-organization of topological defects in liquid crystals and their near-field interference

研究代表者 北海道大学大学院工学研究院 助教 佐々木 裕司

Yuji Sasaki

The generation of structured light beams, such as optical vortices and vector beams, with spatially varying phase and polarization, is interesting for optical applications. It is challenging to find a strategy to control structured light beams in a compact space with a simple procedure. Here, to realize the wavefront shaping of multiple optical vortices and vector beams, we prepare a microarray of q-plates using a self-organization technique that permits the precise positioning of topological defects in nematic liquid crystals. Highly periodic patterns allow us to observe a near-field interference effect. The Talbot self-image, which is reconstructed near the q-plates microarray, enables the lensless compact imaging. Moreover, we observe a Talbot self-healing effect of the optical vortices using a sample cell with a slightly disordered area.

要旨

ネマチック液晶は棒状分子が一様な方向に並んだ 状態であり、光学的異方性を有することから、偏光 を操作する光学材料として有用である.特に、分子 の並びがトポロジカルな構造をもつ場合、通常のガ ウシアンビームとは異なる特殊な光波の発生へと応 用可能であることが知られている.本研究では、液 晶が自発的に形成するトポロジカル欠陥のパターン を光学実験へと応用する.試料セルにレーザー光を 照射し、光渦を発生させるアレイ素子としての性質 を調べた.特にTalbot 効果による自己結像効果を用 いて、試料近傍での光波の変換について検証した. 実験の結果、光渦のような光波においてもTalbot 効 果を観察し、それを用いた偏光操作が可能であるこ とを示した.

1. まえがき

ネマチック液晶とは棒状分子から構成され,長軸 が平均的にある方向に揃った状態である.分子の重 心には秩序がなく流動的である.分子長軸の平均方 向を配向と呼ぶ.ネマチック液晶では配向方向に 様々な物理的異方性が現れる.特に代表的な異方性 として,誘電異方性と屈折率異方性がある.誘電異 方性は配向を電場によって変化させることを可能と している.配向の変化によって,見かけの屈折率異 方性を制御できる.これら二つの性質によって,液 晶材料は電気光学的な用途に幅広く利用されている.

一般に,液晶材料をデバイスに用いるためには配向 の制御が重要となる.これまでに、試料セル内部全 体で一様な配向を得る技術は十分に確立されてきた. 近年では、微小領域において空間的変化を伴う分子 配向の作成が注目を集めている.中でも図1に示し たような分子配向のトポロジカル欠陥はネマチック 液晶においてしばしば観察され、光学への応用にお いても非常に興味深い. 複屈折をもつ液晶物質がそ の光軸を面内で変化させている場合、幾何学的位相 の効果(1)によって、光波に位相を付与することがで きるからである. トポロジカル欠陥の場合, 原点を 中心に配向が回転した構造をとっている.(図1は原 点周りに1回転と-1回転を示している.)これによ って、トポロジカル欠陥を通過した光波は、光渦と なることが知られている. このような液晶のトポロ ジカル欠陥を利用した素子は一般に軸対象偏光素子 や g-plate⁽²⁾ と呼ばれている.ここで g は分子配向 におけるトポロジカルチャージであり,図1はq=1, -1に対応する.

q-plateの作成とはトポロジカル欠陥を安定化させることであると言える.ただし、液晶材料は流動

図1 液晶におけるトポロジカル欠陥の例

性をもっているため、トポロジカル欠陥は時間的・ 空間的に安定化させる技術が必要となる.現在、一 つの欠陥を内包した光学素子は光配向法によって作 成されている.この方法は、アゾ化合物の直線偏光 に対する応答性を用いて、界面の配向を定める手法 である.作成できる構造の自由度は高い反面、細か な構造をパターンにして作成することが難しい.そ のため、現時点ではトポロジカル欠陥のパターンを 作成した例は限られており、それを使った光学実験 は殆どなされていない.

このような状況の中,私たちは近年,液晶に交流 電圧を印加した際に、トポロジカル欠陥が自発的に パターン形成する現象を見出している.⁽³⁾この系を 光学的にみると、微小な q-plate が集まっている状 況とみなすことができる.さらに、表面処理のアイ デアを加えることにより、数十 µm 程度の構造を数 mmの広範囲にわたって均一なドメインとして得るこ とができるようになった.⁽⁴⁾そのため、自己組織化 で作成したトポロジカル欠陥のアレイ構造に、レー ザー光を照射することで、光渦のアレイとしての実 験ができると期待される.

本研究ではトポロジカル欠陥のパターン近傍にお ける光波の振る舞いについて調べる.一般に周期構 造の近傍ではTalbot 効果⁽⁶⁾と呼ばれる現象が観察さ れる.これは,試料セルにおける像(電場ベクトル) と同様の像(自己像,self-image)が,試料からある 一定の距離毎に観察される現象である.液晶材料の パターンを光学素子として用いることで,光渦のよ うな光波であってもTalbot 効果が観察可能である かについて調べた.さらに,Talbot 効果による自己 結像効果を用いて,ミクロな q-plate を使った波面 の変換ができるかについて調べた.

2. 実験方法

2.1 試料セルの作成

試料セルの準備について述べる.一般に液晶材料 は図2のような二枚の平行に配置されたガラス基板 の隙間に挟まれて使用される.液晶層の厚みはおよ そ10 μmである.透明電極(ITO)膜付きガラスを使 用することで、セルの厚さ(z)方向に電場を印加する. ITO 電極では膜の表面において分子の配向を定める ことが出来ないため、基板表面を適切に処理するこ

図2 試料セルの断面の模式図と形成される配向場の様子

とが必要である.一般的には,ITO 電極の表面に 高分子の膜を塗布する.本研究ではシリコーンレジ ン(KR-251,信越化学)をスピンコートした.膜の厚 さはおよそ500 nm 程度あり,電気的な絶縁を保つた めにも利用される.後述するが,このシリコーン樹 脂の膜の膜厚には薄い部分と厚い部分が設けてある. さらに,膜の表面で液晶分子が垂直になるようにシ ランカップリング剤(この場合は,N,N-dimethyl-Noctadecyl-3-aminopropyl trimethoxysilyl chloride,DMOAP)による処理を行っている.

試料セルには負の誘電異方性をもつ液晶材料が注 入される.誘電異方性が負の場合,配向は電場に対 して垂直方向に傾く性質がある.ただし,傾く向き はxy平面内で定まらない.そのため,図2のように, 試料セルを上側から見た場合,2種類のトポロジカ ルな欠陥構造を生じる.本実験系では,膜が窪んで いる部分に優先的に+1の欠陥が生成される.

続いて、シリコーン樹脂の表面の改質方法につい て述べる.図3のように、TEM グリッドを基板の上 に乗せ、紫外線オゾン(UVO)処理を行う.UVO 処理は 表面を親水性にするためによく使われる.表面の改 質時に、炭素などの有機物が取り除かれる.そのた め、表面の改質に加えて、ナノスケールの凹凸を表 面に作り出すことが可能である.その基板の表面を 上述したシランカップリング剤で処理することで、 液晶分子を垂直に配向させることが可能となる.

2.2 AFM による基板の観察

実際に KR-251 の表面に凹凸構造が得られている かについて調べた.図3aのように TEM グリッドを被 せた状態で UVO 処理した基板を準備し,原子間力顕 微鏡(AFM)による観察を行った.その様子が図3bで ある.ここでは六角形タイプの TEM グリッドを用い ている.処理時間はおよそ2時間である.暗い部分 が凹みに対応しており,深さはおよそ50 nm 程度で ある.図3bの通り,メッシュの穴に対応する部分が 窪んでいることが分かる.期待したように,UVO処 理によって表面に凹凸をつけることが可能であるこ とを確かめた.なお,処理時間によって深さは変化 するが,いくらでも薄くすることができる訳ではな い.2時間程度処理を行うとそれ以上処理を行って も厚さは殆ど変化しなくなる.これは表面に分解可 能な炭素などが無くなったためであると考えられる.

図3 UVO 処理によるレリーフ構造のAFM 像

2.3 偏光顕微鏡による観察

続いて, 試料セルに電圧を印加し, 偏光顕微鏡で 観察した時の様子について述べる. 主な結果は図4 に示されている. 電圧を印加する前は垂直配向のた め, 偏光顕微鏡では暗い様子が観察される. 電圧を 上昇させていき、それが閾値を超えると、配向が傾 く様子が顕微鏡で観察される. その時の全体の様子 が図 4a であり, 拡大したものが図 4b, d, e, f に示さ れている. 十字模様を伴う円形の領域が三角格子に 並んで配置されている. 鋭敏色検板の様子や偏光子 を回転させることによって、十字の中心は強度+1の トポロジカル欠陥となっていることが確かめられる. 図4から明らかなように、TEM グリッドの穴の部分 から模様が現れている. 穴の部分はUVO 処理が行わ れる部分であり、 改質された部分の 膜厚が減少する ため、液晶内部での電圧降下に変化が生じていると 考えることができる.シリコーン樹脂の膜厚が薄い

場図4 作成した素子の偏光顕微鏡画像

合,周囲と比べて相対的に電気抵抗が小さくなり, 膜内部での電圧降下が小さくなる. 逆に言えば, 膜 厚が薄い部分の方が、液晶に印加される電圧が大き くなることを意味している.したがって、膜が窪ん でいる部分から優先的に配向が変化していることは 矛盾していない. 図 4c は TEM グリッドで処理した部 分とそうでない部分の境界を示している. 写真から 分かるように、本来の模様は左側の欠陥が正方格子 状に並んだものである. これは+1 と-1 の二種類のト ポロジカル欠陥が交互に並んでいる. つまり、今回 用いた表面処理の方法によって、一方の強度の欠陥 をのみを選択的に誘起することができ、またその配 置を任意に制御できることを示している. メッシュ を四角形のタイプに変化させると、図4gのように、 形成するパターンの違いも変化することがわかる. 電圧を上昇させていくと凹んでいない部分の電圧も 閾値を超え, 配向が変化することによって試料全体 が欠陥のパターンで満たされる.

3. 光学実験

3.1 光学系

作成した試料セルを用いた光学実験について述べ る. 実験のセットアップを図5に示す. He-Ne レー ザーからの光を空間フィルターに通して平面波を準 備した. 試料セルに平面波が照射されることで、周 期構造に起因する自己像が試料セルの近傍に現れる と期待される(Talbot 効果). これを観察するために 対物レンズを使って試料セルの近傍を観察し、その 様子をCMOS カメラで撮影した.対物レンズと試料セ ルはそれぞれ移動ステージに取り付けてあり、観察 位置などを調整可能にした. 偏光状態を様々に変化 させるため、必要に応じて試料の前後に光学素子を 配置する. 直線偏光を使った実験では, 偏光子(PL) と検光子(PL)を使ってカメラに届く偏光を変化させ て観察を行った. 光渦に関連する実験を行う際には 偏光子と検光子の間に2枚の1/4波長板(QWP)を追 加し, 通過する円偏光が直交するように配置する.

試料として使用するトポロジカル欠陥の表し方は 下記の通りである. *xy* 平面の点(*x*, *y*)における配向 の方位角を $\alpha(x, y)$ とし,原点(欠陥の中心)から (*x*, *y*)への角度を ϕ とする.このとき, $\alpha(x, y)$ は半整 数qを用いて, $\alpha(x, y) = q\phi$ と書くことができる.qはチャージを表しており,欠陥の中心周りに配向べ クトルがq回転していると読み替えることができる. このように光軸が α 方向を向いているときの配向の ジョーンズ行列は,リタデーションを δ とした場合, 下記の通りに与えられる.

$$\begin{split} M_{q} &= \cos \frac{\delta}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - i \sin \frac{\delta}{2} \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \\ \end{split}$$
特に、半波長板の場合には、 $\delta = \pi$ であるので、 M_{q} はより簡単に表すことができる.

$$M_q = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$$

今回の実験では、δの値は分子の傾きの割合によって

図6単一の試料セルの自己像

変化するため、印加する電圧によって調整すること ができる.電圧を印加しない場合、*δ* = 0となり、 通常の半波長板の表記と一致する.実験では、レー ザー光の波長に対しておおよそ半波長のリタデーシ ョンをもつポロジカル欠陥になるように試料に印加 する電圧を調整する.円偏光を入射した場合、透過 光はジョーンズ計算で簡単に求めることができる. 欠陥を通過した光波は逆回りの円偏光になるのに加 え、出射光の位相が変化し光渦が生成されることが 計算から求めることができる.

さらに、干渉実験を行う際にはマッハツェンダー 型の干渉計を準備した.光渦を特徴づける実験のた めに実施する.図5のように入射光をビームスプリ ッター(BS)で分割して後方の経路で干渉させる.試 料を通過した光と参照光をうまく干渉させるには、 似たような波面を準備する必要がある.今回、観察 を対物レンズで行っているため、平面波のビーム系 を広げただけでは干渉がうまくいかなかった.対物 レンズを透過した光が若干球面波になっていること が予想される.これを解決するために、参照光側の レーザー光も対物レンズに通過させた.両者を干渉 させることによって、完全に平行ではないが、干渉 縞が観察されるようになった.

3.2 試料セルー枚のとき

1枚の試料セルで光学実験を行ったときの結果につ いて述べる.図6は試料セルを異なる偏光条件下で 観察したものである.まず左側に並べられている画 像は, 試料セルに直線偏光を照射し, 直交ニコルで 観察したときの様子である.zの値は顕微鏡の通常の 焦点位置における画像(z = 0)から遠ざけた距離を 表している、z = 0の場合には偏光顕微鏡画像と同質 の模様が観察されていることがわかる. この十字を 伴った強度分布が一番明るく見えるとき、リタデー ションが半波長($\delta = \pi$)に近づいていることを意味 している、偏光顕微鏡画像と大きく異なる点は、zの 値を変化させたときに見出すことができる. 対物レ ンズを試料から遠ざけていくと、Talbot 距離(z, = 0)において再び同様の像が観察される. なお、今回 の系は六方対称であるため、z_tは下記のように記述 される. (6)

$$z_t = \frac{3d^2}{2\lambda}$$

dは格子間隔、 λ は波長を表している.ここではその 二倍の距離でも同様の様子が観察された.これは十 分な広さで周期構造が得られていることを示すもの である.電圧を印加してくと、明るい部分が暗くな り、逆に周囲の暗くなった部分が明るくなる.この 明暗の逆転はリタデーションが 2π に近づいている ことを示している.

続いて、1/4 波長板を試料の前後に挟んで観察し たときの様子が中央に示されている. 直交ニコルの 場合とは異なり,中心部が暗い円形の強度分布を示 している. Talbot 効果も同様に観察することができ る. 得られたドーナツ状の強度分布が光渦としての 性質を有しているかを調べるために、干渉実験を行 ったときの様子が図6の右側の列である. ドーナツ 状の明るい部分に干渉縞が現れているのがわかる. さらに、その中心部分をよく観察すると、縞模様の 数が左右で異なっており、フォーク状の干渉 編とな っていることが確認できた. これは光渦の特徴であ り、その干渉縞の特徴は g=1 の欠陥から得られるも のと同じであることが分かった.興味深いことに、 対物レンズの位置(z)を変化させた場合でも干渉編 は得ることができる. すなわち, Talbot 距離におい ても光渦が自己像として観察されていることを確か めることができた. さらに電圧を上昇させると、リ タデーションの増加に伴い、明暗が逆転している様 子が観察される. その際に、周囲に新たに生成され たトポロジカル欠陥に関する黒いスポットが見出さ れる.

図7 二枚のサンプルを重ね合わせたときの様子

3.2 高次の光渦アレイの作成

上記の系では、個々のトポロジカル欠陥が光渦を 発生させる素子として利用できることを示してきた. これを応用し、高次の光渦アレイを作成することを 検討した.一方で、本研究で扱う自己組織化がもた らす構造は±1の強度をもつトポロジカル欠陥しか 作ることが出来ない.高次の光渦を発生させるには 1つの試料セルを用いるだけでは不十分である.そ こで私たちは、複数の素子を組み合わせることで、 複雑な光渦アレイを作ることを試みた.q-plate に は、複数の素子を適切に組み合わせることで、様々 な q の値をもつビームを発生させることができると いう性質がある.⁽⁷⁾例えば q=1 のトポロジカルチャ ージをもつ q-plate を二枚用意し、その間に半波長 板 (HWP)を挟むことを考える.よく知られているよう に、半波長板のジョーンズ行列は

 $HWP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

である. 先ほど示した M_q についての式を用いて次のようなジョーンズ計算の式が成り立つ.

 $M_q \cdot \text{HWP} \cdot M_q = \begin{pmatrix} \cos 4\phi & \sin 4\phi \\ \sin 4\phi & -\cos 4\phi \end{pmatrix} = M_{2q}.$

つまり、チャージの足し算を行うことが可能となる. この原理を用いて、高次の光渦のアレイを作成する ことを検討した.多数の光渦を一度に変換する上で, 周期構造による回折の影響が問題となってくる.本 実験系では、ミクロな領域で複屈折が周期的に変化 した構造を持っているため、 透過光は平行には進ま ず、遠方では回折像として現れる. そのため、1つ のトポロジカル欠陥を含む q-plate を平行に配置す る場合とは状況が異なってくる.二つの試料セル内 に含まれる小さなトポロジカル欠陥同士を用いた光 の変換を行うには工夫が必要である. これを解決す るために、Talbot 効果による自己像を使った変換を 提案した、そのときの光学系の配置と結果が図7に 示されている、二つの液晶セルの距離を Talbot 距離 となるように配置した.実際には、自己像が得られ る場所は空気中を仮定しているため、中央に半波長 板を挟むとその位置が若干変化する. 同様にレーザ ー側にある試料セルの影響も受ける. その影響を考 慮して素子を配置する必要があることが分かった. 実際の手順を述べる.まず,図7aのように、レーザ 一側の素子にのみ電圧を印加し、カメラで観察する. もう一つの試料セルは分子が傾いておらず、垂直配 向のままであるため、 複屈折の影響は出てこない. そのため、カメラ側の試料セルを取り外すことなく、 レーザー側の試料セルの像のみを観察することがで きる. さらに、半波長板の存在によって、カメラで 観察される像が変化することを考慮する、半波長板 は円偏光の回転方向を反転させるため、カメラには 図7aのように明暗が逆転した画像が得られる.この ときに、反転したドーナツ状の模様がはっきりと見 えるように対物レンズの位置を調整することで、焦 点の位置を実効的な Talbot 距離に設定することが できる. これは半波長板と二枚目の試料セルの影響 が考慮されているため、異なる厚みの光学素子でも 対応することができる. 続いて、カメラ側の試料セ

ルの位置を合わせる. その時の様子が図 7b である. レーザー側の試料セルの電圧を切り、対物レンズ側 の試料セルのみに電圧を印加する. 電圧を印加して いない試料セルは偏光を変化させることがないため、 入射した円偏光は半波長板を通って二枚目の試料セ ルに入射すると考えればよい. したがって、半波長 板の効果によって、回転方向が反転した円偏光が入 射されるため、先ほどと同様に明暗が逆転した画像 が得られる. ここで、対物レンズの位置を動かすこ となく、2枚目の試料セルの位置を動かすことで、 はっきりとした像が得られるようにする. 最後に, 両方の試料セルに電圧を印加したときの様子が図7c である. 欠陥があった部分の周りにドーナツ状の強 度分布が観察される. さらに干渉実験を一緒に行う と、図7dのような縞模様が得られた.図6の場合と 比べると、 縞の数が中心の左右で2本異なっており、 q=2 の光渦となっていることが確かめられた. 同質 のことを確かめるために、1/4波長板(QWP)を取り除 いた状態での結果を図 7e,f に示した. この場合は, 直線偏光を入射していることになり、計算すると

$$M_q \cdot \mathrm{HWP} \cdot M_q \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos 4\phi \\ \sin 4\phi \end{pmatrix}$$

という電場ベクトルが得られることになる. これは, 欠陥の周りに一周するときに,電場ベクトルは4回 転していることを意味している.実際に,直交ニコ ルで観察すると,8本の暗い線が出ており,期待し た変換が行われていることを示す.図7fのように検 光子の向きを回転させても暗くなる線の本数は変化 していない.

図8 二枚のサンプルを重ね合わせたときの様子

3.3 自己修復現象

これまでは、おおよそ均一とみなせる液晶パターン から生じる Talbot 効果とそれを使った用いた光学 実験を紹介してきた.それに対してここでは、Talbot 効果に関連する別の特徴的な性質として自己修復効

図8 二枚のサンプルを重ね合わせたときの様子

果を紹介する.本研究で用いる試料セルは通常の実 験室で作成しているため、ゴミなどが混入してしま うことや、スピンコートが十分でない場合がある. すると,不完全な部分の周辺は,液晶に電圧を印加 しても、パターンが乱れてしまう. 不均一な状況は Talbot 効果を用いる上では望ましくない. しかしな がら、このような状況にレーザーを照射すると、試 料から離れた部分では、周囲の乱れていない場所か らのTalbot 効果によって、乱れた像が修復すること が知られている、つまり、Talbot 像は不完全な影響 を取り除き,理想的な場合の像を再現することがで きる. 実際に、このことを確かめるために、パター ンの一部の表面改質の方法を変化させて実験を行っ た. その顕微鏡での様子が図8である. ここでは表 面改質を行うための TEM グリッドの上にガラスビー ズを撒いている. いくつかのビーズが TEM グリッド のホールに収まっているのがわかる. つまりビーズ を乗せたところも UVO 処理の影響が届かないと期待 できる. 実際に改質した基板を使って試料セルを作 成し、液晶に電圧を印加したときの様子が図8bであ る. 期待した通り、ビーズがあった部分は垂直配向 が維持され、暗い様子が観察される、この状況に、 レーザー光を照射し、得られる像が対物レンズの位 置に応じてどのように変化するかを調べた、そのと きの様子が図9である.ここでは直線偏光を照射し, 直交ニコルで観察したときの様子を示している.上 の黒い部分にパターンが現れていない部分が見られ る.それに対して,対物レンズの距離を変化させる と Talbot 距離においてはパターンが無かった部分 にも同様のパターンが見られていることがわかる. これは光渦の場合でも同様であり,広範囲に渡って 均一な構造であることで,自己修復効果が見られた ことを示している.

4. まとめ

自己組織化で作成したトポロジカル欠陥のパター ンを用いて、光渦アレイを作成し、試料セル近傍に おける光波の振る舞いについて調べた. 試料セル近 傍において, Talbot 効果に伴う光渦アレイの自己像 を得ることが出来た.即ち、光渦のような偏光が空 間的に一様でない光波でも Talbot 効果を用いるこ とができることがわかる.液晶素子は電場によって リタデーションを制御可能であるため、自己像もま た電場によってスイッチングが可能である、さらに 二枚の素子を組み合わせ、多数のトポロジカル欠陥 の間で光波の変換を行う方法を提案した. Talbot 効 果の自己像を用いることで光渦アレイであっても、 個々のトポロジカル欠陥を通過した波面の変換が可 能である.本研究では、自己結像に関して研究を行 ったが、Talbot 距離以外でも様々な振る舞いを示す ため、今後は光軸方向の光波の変化についても調べ ることができると考えられる. さらに、その光を応 用した実験や、光配向技術を検討したいと考えてい る.

5. 謝辞

本研究は公益財団法人 マツダ財団の助成を受け て行われました.関係者の皆様に心より御礼申し上 げます.

発表論文

- Y. Sasaki, K. Yamazaki, N. Murakami, K. Yamane, H. Orihara, "Lensless Wavefront Parallel Processing of Vector Beams by Self-Images of a Self-Organized Q-Plates Microarray" Adv. Photon. Res., 3, 2100368 (2022).
- [2] Y. Sasaki, N. Murakami, K. Yamane, H. Orihara,

"Near-field diffraction from self-organized topological defects arrays in nematic liquid crystals", 19th Optics of Liquid Crystals, オンライン, 2021 年9月.

[3] 佐々木裕司,村上尚史,山根啓作,折原宏, "液晶のトポロジカル欠陥を用いた光渦アレイの回折現象"2021 年度日本物理学会第周秋季大会、オンライン、2021 年9月.

参考文献

- G. Biener, A. Niv, V. Kleiner, E. Hasman, "Formation of helical beams by use of Pancharatnam-Berry phase optical elements" Opt. Lett., 27, 1875 (2002).
- (2) L. Marrucci, C. Manzo, D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media" Phys. Rev. Lett., 96, 163905 (2006).
- (3) Y. Sasaki, V. S.R. Jampani, C. Tanaka, N. Sakurai, S. Sakane, K. V. Le, F. Araoka, and H. Orihara. "Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals" Nat. Commun., 7, 13238 (2016).
- (4) Y. Sasaki, J. Takahashi, S. Yokokawa, T. Kikkawa, R. Mikami, H. Orihara, "A General Control Strategy to Micropattern Topological Defects in Nematic Liquid Crystals Using Ionically Charged Dielectric Surface" Adv. Mater. Interfaces, 8, 2100379 (2021).
- (5) H. F. Talbot, "LXXVI. Facts relating to optical science. No. IV" Philos. Mag. 9, 401(1836).
- (6) G.-X. Wei, L.-L. Lu, C.-S. Guo, "Generation of optical vortex array based on the fractional Talbot effect" Opt. Commun., 282, 2665 (2009).
- (7) S. Delaney, M. M. Sánchez-López, I. Moreno, J. A. Davis, "Arithmetic with q-plates" Appl. Opt., 56, 596 (2017).