反強磁性体を用いたテラヘルツ受動素子の開発

Development of passive THz components by using antiferromagnets

研究代表者 京都大学化学研究所 准教授 森山貴広

Takahiro Moriyama

Antiferromagnets are one of the few candidate materials which can work at THz frequency and are therefore a potential material for THz technology recently attracting interests from high-speed communication and sensing applications. In this work, we investigate an antiferromagnetic resonant frequency tunability for cation doped NiO and α -Fe₂O₃. It is found that, with various cation dopants, the resonant frequency can be tuned in a range between millimeter-wave band and THz band. A good frequency tunability as well as the resonant linewidth shown in this work suggests that cation doped antiferromagnets are useful materials for millimeter-wave and THz applications such as filters and absorbers.

要旨

反強磁性体は、THz 電磁波に応答することができ る数少ない材料の1つであり、高速通信やセンシン グアプリケーションから注目を集めている THz 技術 の潜在的な材料である.本研究では、反強磁性体 NiO や α-Fe₂O₃にカチオンドープを行うことで反強磁性 共鳴周波数や共鳴線幅を制御し、その可変性につい て調査を行った.さまざまな種類のカチオンドープ により、反強磁性共鳴周波数がミリ波帯から THz 帯 までの範囲で調整可能であることが分かった.また、 共鳴線幅の制御性もカチオン元素に大きく依存する ことが分かった.本研究で示された良好な周波数可 変性は、カチオンドープされた反強磁性体が、フィ ルターや吸収体などのミリ波および THz アプリケー ションに有用な材料であることを示唆している ^{[1][2][3]}.

1. まえがき

情報通信機器が扱う膨大な情報量に伴い,情報処 理・通信速度の更なる向上が必要になってきている. 特に,beyond5Gや6Gにおける通信周波数はテラへ ルツ帯域が想定されており,これらの周波数帯に対 応する材料やデバイスの開拓・創製が早急に望まれ ている.これまでのマイクロ・ミリ波帯域における 応用では当該周波数で応答性がよい強磁性体が主に 用いられてきた.代表的なものとしてアイソレータ やフィルタ材料としてよく用いられるイットリウム 鉄ガーネット(Y₃Fe₅O₁₂)などがある.これは,一般 的な強磁性体の特性周波数(磁気共鳴周波数)がち

ょうどマイクロ・ミリ波の範囲にあり、これらの周 波数帯域での応答性が良いからである. つまり、強 磁性体は、その磁気共鳴周波数より1~2桁も高い テラヘルツ帯域ではほとんど応答しないため利用で きない. そこで本研究では、これらを解決するため に、テラヘルツ帯域に磁気共鳴を有する反強磁性体 に着目した. 反強磁性体は, 様々な固定概念から「役 に立たない磁性材料」(1)として応用・基礎研究がほ とんど行われてこなかった材料・物理系である.し かしながら,近年,申請者自身の主導するものを含 む研究成果から、反強磁性体におけるテラヘルツに 及ぶ超高速スピンダイナミクス機構⁽²⁾⁽³⁾やスピン自 由度に関連した物理現象(4)(5)が実験的に明らかにな りつつある.本研究は、これらの研究成果をさらに 発展させることで、反強磁性体特有のテラヘルツ帯 域スピンダイナミクスとスピン自由度を積極利用し た次世代テラヘルツ材料の創製、およびそれを用い たテラヘルツ受動素子の開発を目的とする. 具体的 には、最近申請者らが確立した THz 帯における反強 磁性共鳴評価手法を利用して、様々な反強磁性秩序 をもつ材料について共鳴緩和の物理的起源や機構を 調査し、THz フィルタやTHz 波吸収体などのテラへ ルツ受動素子に供する技術基盤を構築する. 本報告 では、Ni0や α-Fe₂O₃などの反強磁性材料に様々な カチオンを添加し、共鳴周波数や共鳴線幅を自在に 制御する手法を確立する.

2. 反強磁性共鳴とは

まず、反強磁性スピンダイナミクスを議論する上 で重要となる反強磁性共鳴の基礎について解説する.

2つの磁気副格子を有し、それぞれの副格子の磁 気モーメントが反平行に結合しているようなコリニ ア反強磁性体を考える.この様な磁気構造を持つ代 表的な材料に NiO, CoO, MnO 等がある.副格子を A および B とし、それらに付随する磁気モーメント(単 位ベクトル)を m_A および m_B とすると、これらのダ イナミクスは以下で記述される⁽⁶⁾.

$$\dot{\mathbf{m}}_{\mathbf{A}} = -\gamma_A (\mathbf{m}_{\mathbf{A}} \times \mathbf{H}_{\mathbf{A}}) + \alpha_{AA} (\mathbf{m}_{\mathbf{A}} \times \dot{\mathbf{m}}_{\mathbf{A}}) + \alpha_{AB} (\mathbf{m}_{\mathbf{A}} \times \dot{\mathbf{m}}_{\mathbf{B}})$$
(1)

$$\dot{\mathbf{m}}_{\mathrm{B}} = -\gamma_{B}(\mathbf{m}_{\mathrm{B}} \times \mathbf{H}_{\mathrm{B}}) + \alpha_{BB}(\mathbf{m}_{\mathrm{B}} \times \dot{\mathbf{m}}_{\mathrm{B}}) + \alpha_{BA}(\mathbf{m}_{\mathrm{B}} \times \dot{\mathbf{m}}_{\mathrm{A}})$$

ここで、 γ_A および γ_B はそれぞれの副格子における磁 気回転比、 α_{AA} および α_{BB} はそれぞれの副格子内での ダンピング定数、 α_{AB} および α_{BA} は副格子間のダンピ ング定数である. さらに、副格子 A および B に作用 する有効磁場 H_{AB} は以下で記述される.

$\mathbf{H}_{\mathbf{A},\mathbf{B}} = JM_{B,A}\mathbf{m}_{\mathbf{B},\mathbf{A}} + 2K_{A,B}M_{A,B}\mathbf{a}$

$+ h_+ e^{-i\omega t} \mathbf{b}$

ここで $M_{A,B}$, $K_{A,B}$ はそれぞれの副格子に付随した 磁化の大きさおよび異方性エネルギーで, J(>0)は分子場定数, $h_{\pm} = h' \pm ih''$ は周波数 ω の励起磁 場の大きさである. a および b は磁気異方性およ び励起磁場の方向を決める単位ベクトルである. 以 下で紹介する実験は全て外部静磁場無しで行ってい るため, 簡単の為ここでは静磁場の項は含めていな い. NiO の場合, 両副格子ともNi²⁺カチオンに付随し た磁気モーメントで構成されており, 副格子の磁化 の大きさ, および異方性エネルギーは同じなので $\gamma_A = \gamma_B \equiv \gamma$, $M_A = M_B \equiv M_0$, $K_A = K_B \equiv K \ge t$ る. ダンピング定数は副格子内でのダンピングのみ を考慮し $\alpha_{AA} = \alpha_{BB} \equiv \alpha$, $\alpha_{AB} = \alpha_{BA} = 0$ とする. 微小振動 $m_{A,B} = m_{A,B\pm}e^{-i\omega t}$ を仮定し,式(1)および (2)を線形化すると以下の連立方程式が得られる.

$$\begin{pmatrix} \pm \omega - \Omega - i\omega\alpha & -\gamma J M_0 \\ \gamma J M_0 & \pm \omega + \Omega + i\omega\alpha \end{pmatrix} \begin{pmatrix} m_{A\pm} \\ m_{B\pm} \end{pmatrix}$$

$$= \begin{pmatrix} -\gamma M_0 h_{\pm} \\ \gamma M_0 h_{\pm} \end{pmatrix}$$

$$(4)$$

ここで $\Omega = \gamma M_0 (J + 2K)$. $m_{A,B\pm} = m'_{A,B} \pm i m''_{A,B}$ は円偏向の極性を示す. 式(4)をそれぞれ $m_{A\pm}$, $m_{B\pm}$ について解くと,

$$m_{A\pm} = \frac{\gamma M_0(\pm \omega + 2\gamma M_0 K + i\omega\alpha)}{\omega_r^2 - \omega^2 - 2\Omega i\omega\alpha} h_{\pm}$$
(5)
$$\ddagger \exists \downarrow \mho,$$

$$m_{B\pm} = \frac{\gamma M_0(\pm \omega - 2\gamma M_0 K - i\omega\alpha)}{\omega_r^2 - \omega^2 - 2\Omega i\omega\alpha} h_{\pm}$$
(6)

となる.ここで, $\omega_r = 2\gamma M_0 \sqrt{K(J+K)} \approx 2\gamma M_0 \sqrt{KJ}$ は反強磁性共鳴周波数である.つまり,共鳴周波数が分子場定数の平方根に比例していることがわかる.さらに,全磁化は以下で表される.

$$m_{\pm} = m_{A\pm} + m_{B\pm} = \frac{\pm \omega \gamma M_0}{\omega_r^2 - \omega^2 - 2\Omega i \omega \alpha} h_{\pm} \tag{7}$$

式(7)を有理化し、 $\omega_r \approx \omega$ で近似すると、高周波磁化率 χ は

$$\chi = \frac{m_{\pm}}{h_{\pm}} = \frac{\gamma M_0[(\omega_r - \omega) + \Omega i\alpha]}{(\omega_r - \omega)^2 + \Omega^2 \alpha^2},$$
(8)

で表される. 共鳴吸収スペクトルはχの虚部を取って,

$$\chi_i = \frac{\gamma M_0 \Delta \omega}{(\omega_r - \omega)^2 + \Delta \omega^2}.$$
(9)

となり、ローレンツ関数で表される. ここでローレ ンツ関数の半値半幅は $\Delta \omega = \gamma M_0 (J + 2K) \alpha$ とな る. したがって、共鳴スペクトルの半値半幅を測定 することで、反強磁性磁化ダイナミクスの緩和を示 すパラメータであるダンピング定数 α を求めること ができる.

(2)

(3)

3. THz スペクトロスコピー

本研究では、連続波および周波数掃引が可能なTHz 技術を用いて分光を行っている. 図1に概略を示す. 2 つの分布帰還型レーザー光源(Distributed feedBack Laser: DFB Laser)を利用して、波長が異 なる(λ_1 および λ_2 とする)レーザー光をファイバ ー型結合器を介して混合する. 混合されたレーザー 光には、波長差に対応した周波数 $\Delta f = |c/\lambda_1 - c/\lambda_2|$ で強度変調(ビート)が起こる. ここで、*c* は 光速. このビートレーザー光を光伝導スイッチ (photoconductive switch: PCS)に導入すると、 Δf の 周波数でオン・オフを繰り返す. ここにバイアス電 圧を加えると PCS に掛かる電場が Δf で振動し、電磁 波を放射する(エミッタ:図1左側). 例えば、 λ_1 = 780nm、 λ_2 = 782nm とすると、 Δf = 1THz となる.

放射された電磁波は Si 球面レンズで試料に集光 され、透過電磁波の強度はデテクタ(図1右側)に より検出される.デテクタもエミッタと同様に PCS で構成されており、PCS 上での電磁波とビートレー ザー光のヘテロダイン検波を利用して電流信号とし て検出する.本実験では波長可変分布帰還型レーザ ー光源を利用しており Δf は 0 ~ 2 THz で調整可能 であり、電磁波強度は 10⁶ W 程度、周波数精度は 10 MHz 以下である.

図1 THz スペクトロスコピーの概略図

4. 反強磁性共鳴および磁気ダンピングの評価手法

典型的なコリニア反強磁性体である NiO について,

THz 分光を行った結果を示す.本実験では、(111)面 で劈開したバルク単結晶体(厚さ 0.45 mm)と,粉 末焼結法により得た多結晶体(厚さ1.4 mm)の反強 磁性共鳴を無磁場下において試料温度(1)を変化さ せて測定し、比較した. 図2(a)にX線回折の結果を 示す.線幅および SEM による試料断面の解析から、 多結晶体については結晶粒の大きさは 100 nm から 10 µm で分散していることが分かった. これらの試 料を T= 305 K において測定したテラヘルツ透過ス ペクトルを図2(b)に示す.単結晶試料では厚さ方向 の多重反射による干渉(ファブリペロー干渉)のせ いで周波数に対して透過強度が周期的に振動してい るのが見られる (図2(b)上段). 図2(b)中段は, 適 切なモデルによりこの振動成分を排除したスペクト ルである.単結晶試料および多結晶試料共に1 THz 付近に鋭い吸収がみられており、先行研究における Ni0 の反強磁性共鳴周波数と良い一致を示している (7) (8)

図2(a)単結晶および多結晶Ni0のX線回折(b)透過スペクトル

図3(a)(b)および図4に共鳴周波数および共鳴線幅(半値半幅)の温度依存性を示す.単結晶および 多結晶どちらの試料においても、共鳴周波数は NiO のネール温度($T_V = 523$ K)に向かって急激に減少 しているのが分かる.共鳴周波数は、式(6)から、 $\omega_r \approx 2\gamma M_0 \sqrt{KJ}$ であるが、分子場定数 J は温度に依 存しないので、温度に依存する変数は M_0 および Kの みと考えられる.異方性エネルギーKは M_0 のべき乗 に比例するので、共鳴周波数の温度依存性は

図3 (a)単結晶NiO(b)多結晶NiOにおける ωrの温度依存性

 $<math>
 \omega_r(T) = \omega_0 (M_0'(T))^n \ c$ 記述できる. ここで, ω_0 は 0K における共鳴周波数, $M_0'(T) = M_0(T)/M_0(0K)$ は T = 0 K $\ comotomode multiple multin multinde multiple multiple multiple multiple multiple$

一方、 $\Delta \omega$ は多結晶の方が単結晶よりも1.5倍程度 大きいことが分かる. *T* = 305 K において、単結晶 のダンピング定数は α = 5.0 ± 0.4 x 10⁻⁴、多結晶 では7.4 ± 0.4 x 10⁻⁴であった. さらに、多結晶の $\Delta \omega$ は温度に対してより急峻に増加することが分か った. これらの違いは、強磁性体の場合と同様に、 反強磁性ダイナミクスにおいても内因性および外因 性の磁気ダンピングが存在することを示唆している.

カチオンドープによる共鳴周波数および ダンピング制御

5. 1 Ni0 へのカチオンドープ(図5)

反強磁性共鳴周波数は、分子場定数 Jや副格子磁 化 M_0 ,異方性エネルギーKに依存する.これらは、 Ni²⁺カチオンを種々のカチオンで置換することで変 化させることができる.図6および図7は磁性イオ ンである Mn^{2+} ,非磁性イオンのLi⁺, Mg^{2+} で置換した ときの ω_0 および T_N , $\Delta \omega$ である. Mn 10%置換の試料 以外は全て母相NiOの結晶構造を保ちつつカチオン 置換されていることをX線回折において確認してい る. Mn で置換した場合,置換量 x に対して ω_0 の方が T_N よりも大きく減少していることが分かる.ここで, 交換磁場を $H_E = JM_0$ 異方性磁場 $H_A = 2KM_0$ とす

図5 Ni0 へのカチオンドープのイメージ図

ると、 ω_0 は交換磁場と異方性磁場の積の平方根に比例する(式(6)). T_v は交換磁場に比例すると考える と⁽¹⁰⁾、 ω_0 と T_v の減少率から、Mn 置換は、主に異方 性磁場を減少させることが分かった. 一方 Mg や Li で置換した場合は、 ω_0 と T_v の減少率から異方性磁場 と交換磁場両方にほぼ同等に作用することが分かっ た. これらは、交換相互作用が非磁性イオンで阻害 されるのに対して、磁性イオンではそれほど影響が ないということで説明できる⁽¹¹⁾.

図6 ω₀および *T_N* の(a) Mn 組成依存性, (b) Li 組成依存 性, (c) Mg 組成依存性

5. 1 α-Fe₂0₃へのカチオンドープ

Ni0 へのカチオンドーピングでは 0.7~1.1THz の 範囲で共鳴周波数を変調することができた.本項目 では、サブテラヘルツ~テラヘルツ領域をカバーす るために α -Fe₂O₃ に着目し調査を行った. α -Fe₂O₃ の結晶構造はコランダムである(図8(a)). 隣り合 う Fe³⁺の磁気モーメントは反強磁気的に結合してお り、2つの磁気副格子磁化MLおよびMLを構成してい る. α-Fe₂O₃には反強磁性―常磁性転移温度である ネール温度 (T_N=950 K) に加えて反強磁性秩序軸 (磁 気異方性)が結晶軸に対して変化する温度(モーリ ン温度 T_M=260 K) が存在する. T < T_Mの場合, 図1(b) に示すようにMとMはc軸に沿って反対方向に整列 する. T > T_M では, Dzyaloshinskii-Moriya 相互作 用(DMI)による a-b 平面内の微小な磁化の出現とと もに、M」とM。はそれぞれ a-b 平面内に整列する(図 8(c)). モーリン温度での磁気相転移, つまりモーリ ン転移は、複数の磁気異方性起源とそれらの温度依

図8 α-Fe203の結晶構造と磁気異方性

存性の競合から生じることが知られている⁽¹²⁾.すで に先行研究において,α-Fe₂O₃へのカチオンドーピ ングによりモーリン温度を変調できることが報告さ れている⁽¹²⁾.これはつまり,カチオンドーピングに より磁気異方性やその温度依存性を変調されている ということを示唆しており,異方性エネルギーKに 依存する反強磁性共鳴周波数も変調できると考えら れる.

本研究では、Al³⁺, Ru³⁺, Rh³⁺, および In³⁺をドー パントとして調査した. 図9にそれぞれドーパント におけるモーリン温度のドープ量依存性について示 す. X 線回折 (XRD) による結晶構造解析では、図9 に示したドープ量の範囲ではこれらのドーパントは Fe³⁺サイトを置換していることが分かった. 純粋な α-Fe₂O₃のモーリン温度は255K であり、先行研究と 良い一致を見せている⁽¹³⁾. Ru³⁺および Rh³⁺をドープし た場合は、モーリン温度が上昇するのに対して、Al³⁺ および In³⁺の場合はモーリン温度が下降する. これ らのドーパントは磁気異方性やその温度依存性に関 して、相反する効果を与えることが分かる.

図 10 にそれぞれのカチオンドープにおける共鳴 周波数ωrの温度依存性を示す.純α-Fe₂0₃に関して は 100~450K の温度範囲で明瞭な共鳴吸収ピークが 観測されており,共鳴周波数はモーリン温度で極小 になっていることが分かる.つまり,図8に示した ように,磁気異方性がC面直からC面内に移り変わ るモーリン温度において磁気的に等方的になり,有

図9 モーリン温度のカチオンドープ依存性

効的な磁気異方性が極小値をもつことと対応している.一方,カチオンドープ量が増加すると共鳴吸収 ピークが不明瞭になる傾向が見られた.カチオン種 や測定温度範囲によっては共鳴吸収ピークが観測で きなかった.NiOの場合と同様にカチオンドープに よって急激に共鳴線幅が増加している可能性が示唆 される.

図10 それぞれのカチオンドープにおける共鳴周波数 *ω*_rの温度依存性

図11 α-Fe₂0 へのカチオンドープによる室温(300K)における共鳴周波数の制御性(一部のデータは外挿値)

図 10 は共鳴吸収ピークが観測できた範囲でプロ ットしている. Al³⁺および In³⁺ドープについては,モ ーリン温度より高い温度範囲で共鳴周波数を増加さ せる効果があることが分かる.一方, Rh³⁺ドープは共 鳴周波数を減少させる効果があることが分かった. Ru³⁺ドープはモーリン温度より高い温度範囲での共 鳴吸収ピークが観測されなかったが,モーリン温度 以下では共鳴周波数を増加させることが分かった. モーリン温度で共鳴周波数が極小値を持つというこ とを考慮すると,それぞれのカチオン種による共鳴 周波数の温度依存性の変化は図9 で示したモーリン 温度のカチオンドープ量依存性と矛盾しないことが 分かった.

図 11 に α-Fe₂0 へのカチオンドープによる室温 (300K)における共鳴周波数の制御性を示した. Al³⁺, Ru³⁺, および Rh³⁺のカチオンドープによって 0.2~ 0.95THz のサブテラへルツ~テラへルツ領域で共鳴 周波数を制御可能であることが分かる.

6. まとめ

本研究では、反強磁性体 Ni0 や α-Fe₂O₃にカチオ ンドープを行うことで反強磁性共鳴周波数や共鳴線 幅を制御し、その可変性について調査を行った.さ まざまな種類のカチオンドープにより、反強磁性共 鳴周波数がミリ波帯から THz 帯までの範囲で調整可 能であることが分かった.また、共鳴線幅の制御性 もカチオン元素に大きく依存することが分かった. 特にα-Fe₂O₃へのカチオンドープでは0.2~0.95THz と広範囲の周波数制御を行うことができた.本研究 で示された良好な周波数可変性は、カチオンドープ された反強磁性体が、将来 beyond5G や 6G において 利用される通信周波数帯においてフィルターや吸収 体などの応用に有用な材料であることを示唆している.

発表論文

- Y. Sasaki, G. Li, T. Moriyama, T. Ono, R. V. Mikhaylovskiy, A. V. Kimel, and S. Mizukami, "Laser stimulated THz emission from Pt/CoO/FeCoB", Appl. Phys. Lett. 117, 192403 (2020).
- [2] T. Moriyama, and S. Mizukami, "The 2021 Magnonics Roadmap:
 14. Antiferromagnetic Magnonics" Journal of Physics: Condensed Matter 33, 413001 (2021).
- [3] K. Hayashi, K. Yamada, M. Shima, Y. Ohya, T. Ono, and T. Moriyama, "Control of antiferromagnetic resonance and the Morin temperature in cation doped α-Fe_{2-x}M_xO₃ (M = Al, Ru, Rh, and In) " Appl. Phys. Lett. 119, 032408 (2021).

口頭発表

- (1) 反強磁性体テラヘルツスピントロニクスに向けて(招待講演),
 日本物理学会第76回年次大会 シンポジウム、3/12/2021、森山貴広
- (2) 「α-Fe_{2-M},0₃ (M = Al, Ru, Rh, In)における反強磁性共鳴と モーリン温度の組成依存性」, 2021 年第 68 回応用物理学会春 季学術講演会, オンライン, 3/18/2021, 林 兼輔, 山田 啓介, 嶋 睦宏, 大矢 豊, 小野 輝男, 森山 貴広
- (3) Laser pulse induced ultrafast spin current through the antiferromagnetic insulator in Pt/CoO/FeCoB, INTERMAG 2021, online, 4/28/2021, Yuta Sasaki, Guanqiao Li, Takahiro Moriyama, Teruo Ono, Rostislav Mikhaylovskiy, Alexy Kimel, Shigemi Mizukami
- (4) Controlling antiferromagnetric resonance (Invited talk), INTERMAG 2021, online, 4/29/2021, Takahiro Moriyama
- (5) 反強磁性体を用いたテラヘルツスピントロニクス(招待講演), 電気学会専門調査委員会,8/26/2022,森山貴広

受賞

 2021 年春季応用物理学会 ポスター賞 α-Fe_{2-M}₀3 (M = A1, Ru, Rh, In)における反強磁性共鳴とモーリン温度の組成依存 性

参考文献

- (1) L. Néel, Noble Lecture (1970): https://www.nobelprize.org/prizes/physics/1970/neel/
 - <u>lecture/</u>
- (2) T. Moriyama, K. Hayashi, K. Yamada, M. Shima, Y. Ohya, and T. Ono, Phys. Rev. Mater. 3, 051402 (2019).
- T. Moriyama, K. Hayashi, K. Yamada, M. Shima, Y. Ohya, Y. Tserkovnyak, and T. Ono, Phys. Rev. B 101, 060402 (2020).
- (4) T. Moriyama, M. Kamiya, K. Oda, K. Tanaka, K.-J. Kim, and T. Ono, Phys. Rev. Lett. **119**, 267204 (2017).
- (5) T. Moriyama, K. Oda, T. Ohkochi, M. Kimata, and T. Ono, Sci. Rep. 8, 14167 (2018).
- (6) C. Kettel, Phys. Rev. 82, 565 (1951).
- (7) T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 77402 (2010).
- T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Meahrlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, Nat. Photon. 5, 31 (2011).
- (9) A. Sievers and M. Tinkham, Phys. Rev. 129, 1565 (1963).
- (10) P. W. Anderson, Phys. Rev. 79, 705 (1950).
- (11) T. Moriyama, K. Hayashi, K. Yamada, M. Shima, Y. Ohya, and T. Ono, Phys. Rev. Mater. 3, 074402 (2020).
- (1 2) A. H. Morrish, Canted Antiferromagnetism: Hematite (World Scientific Publishing, Singapore, 1994) 1st ed.
- (13) F. J. Morin, Phys. Rev. 78, 819 (1950).